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Size effects and micromechanics of a 
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The rigidity of rods of a polymeric foam in bending and torsion is measured as a function 
of diameter. The dependence of rigidity upon specimen size is found to be inconsistent 
with a classically viscoelastic continuum model. The Cosserat continuum, which admits 
additional degrees of freedom associated with rotation of the microstructure, describes 
the foam more accurately than the classical continuum. Evidence is presented that 
additional degrees of freedom, associated with the deformation of the microstructure, 
must be incorporated in a complete continuum model of foamed materials. 

1. Introduction 
For many purposes it is considered appropriate 
to model engineering materials as continua. The 
alternative of performing a detailed analysis of 
the transmission of forces between the individual 
grains of a polycrystalline material or between the 
constituents of a composite, is unreasonably 
difficult in most cases. In the classical theory of 
elasticity, the actual material is replaced by an 
equivalent continuum in which points have trans- 
lational degrees of freedom only, and the trans- 
mission of load across a differential element of 
surface is described completely by a force vector. 
The predictions of  elasticity theory agree with 
experiment for most engineering materials under 
most circumstances. Discrepancies have been 
reported i n  the literature between theory and 
experiment in fatigue properties of coarse-grained 
materials in regions of  large strain gradient [1 ]. To 
remedy the shortcoming of classical elasticity in 
situations for which the microstructure size cannot 
be neglected in comparison with length scales of 
interest, several researchers have developed 
continuum theories for mechanical behaviour, 
which contain some of the degrees of freedom 
of the microstructure [2-8] .  It is the purpose of 
this investigation to explore the mechanics of a 
foamed plastic with the aim of arriving at a 
generalized continuum model. 
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2. Experimental procedure 
2.1. Quasistatic experiments 
We consider a porous, polymeric foam for which 
the cell diameter is about one millimetre (Fig. 1). 
The quasistatic experimental method is based on 
the size effects which are predicted to occur in 
the bending [9] and torsion [10] of rods of a 
Cosserat [3] solid; the Cosserat theory is one of 
the simplest generalizations of classical elasticity 
[7]. The foam is rather compliant, therefore it is 
necessary to design an experimental apparatus 
which minimizes friction and other sources of 
parasitic force error. The apparatus, shown in 
Fig. 2, makes use of a disc-shaped permanent 
magnet attached to the end of a specimen to 
apply a torque to the specimen. The magnet is 

:placed at the centre of a Helmholtz coil, which 
produces a very uniform magnetic field B in 
response to an electric current. The torque on the 
specimen is given by -r = lax B, in which la is the 
dipole moment of the magnet. The magnet is made 
of samarium-cobalt alloy which sustains an 
exceptionally high level of magnetization, or 
magnetic dipole moment per unit volume. The 
torque on the specimen is proportional to the 
current in the Helmholtz coil. Bending and torsion 
are achieved \by properly orienting the Helmholtz 
coil with respect to the magnet, so that the torque 
vector is in the correct direction. The angular 
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Figure 1 Optical transmission 
photograph of the polystyrene 
foam structure. Polystyrene 
foam; scale mark, 10 mm. 

displacement of the end of the specimen is deter- 
mined by measuring the linear displacement of a 
laser beam reflected from a mirror fixed to the 
specimen. The apparatus is free of hysteresis and 
frictional errors and can accommodate specimens 
with a wide range of rigidities, a necessity in size- 
effect studies. The apparatus rigidity is much 
greater than the rigidity of the largest specimen. 
This was verified by observing the (negligible) 
angular displacement of a mirror attached to the 
portion of the apparatus frame which supports the 
specimen. 

Calibration of the apparatus is achieved by 
using an elastic (non-dissipative) specimen: a 

m 

MIRROR~/ MAGNET 

TO SCREEN 
Figure 2 Experimental apparatus. 

length of copper wire. The relationship between 
Helmholtz coil current and specimen angular 
displacement under static conditions is deter- 
mined in torsion, then the torsional resonant 
frequency is determined using a sinusoidal current 
input to the coil. Since the metal specimen's 
viscoelastic loss is negligible, the torque-angle 
relationship is essentially independent of frequency 
by virtue of the Kramers-Kronig relations. The 
following relationship is therefore obtained: 

";(i) = (27ru)20(i)I  (1) 

in which I is the mass moment of inertia of the 
magnet about the specimen axis, v is the resonant 
frequency, r is the torque upon the magnet due 
to the field of the Helmholtz coil, 0 is the angle as 
a function of current obtained from the quasi- 
static test, and i is the coil current. The magnet 
mass, needed to compute I,  is determined by 
means of a non-magnetic balance. Care was also 
taken during the weighing procedure to neutralize 
most the magnet's external field by clamping it 
with permeable steel; the mass of the clamp was 
then subtracted. Apparatus calibration was verified 
by using it to examine a rod of polymethyl meth- 
acrylate, which has known properties and which 
obeys classical viscoelasticity on a macroscopic 
scale. 

A foam specimen was prepared by rough- 
cutting a rectangular block into an octagonal 
prism and shaping it into circular cylindrical 
form on a lathe. The specimen was then cemented 
to polymethyl methacrylate end plates with a 
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cyanoacrylate adhesive, and mounted in the 
apparatus. It was tested in bending and torsion 
as described above; step current, therefore step 
torque, was applied. The foam is viscoelastic, 
therefore isochronal data were extracted, at a time 
15 seconds after the application of the step 
torque. Simple tension experiments were also 
performed in creep mode by means of dead 
weights. Specimen end displacement was measured 
without contact, in this case using a microscope 
with a calibrated reticle. Poisson contraction was 
observed using the same microscope to observe 
motion of wire markers glued to the lateral surface 
of the specimen. Again, isochronal data at time 
15 sec after loading, were obtained. Following this 
procedure, the specimen mass and dimensions 
were determined, and it was cut down to a smaller 
size so that the length/diameter ratio was held 
constant. 

or if it has appropriate statistical characteristics, 
it may be possible to transform the structure into 
an equivalent continuum. The nature of this 
continuum depends not only on the original 
structure, but also on the accuracy of the trans- 
formation, i.e. the extent to which the degrees 
of freedom of the structure are incorporated 
into the continuum model. The simplest type of 
continuum model of a structured material is 
composite theory, in which the composite material 
is transformed into a classically elastic, possibly 
anisotropic, continuum. If the physical dimensions 
of interest exceed the microstructure size by 
several orders of magnitude, classical elasticity 
is considered to be adequate. If not, a more 
general continuum model may be needed. Several 
such models which have attracted considerable 
attention, are considered in the following 
sections. 

2.2. Dynamic  e x p e r i m e n t s  
The dispersive behaviour of the foam was 
examined in free-free unloaded resonance 
vibration experiments upon rectangular bars of 
foam. Longitudinal vibrations were excited in the 
foam by an electromagnetic technique in which 
an oscillatory current passed through several 
parallel fine (no. 38), i.e. 0.10 mm diameter, wires 
cemented to one end of the specimen and immersed 
in a static magnetic field. The vibrations were 
detected using a similar apparatus at the other end 
of the specimen. The excitation wave form was a 
series of gated bursts of sinusoids; measurements 
were made of the detected free-decay waveforms. 
To ascertain the possible effect of massJoading by 
the wire assembly, the following test was per- 
formed. The bar resonant frequency was measured 
using assemblies of seven wires and one wire; the 
difference in resonant frequency was less than 1%. 
The experimental configuration, therefore, provides 
a good approximation to the ideal case of f ree -  
free resonance. The method was used to obtain the 
resonant frequency as a function of bar length. 
In the lowest mode of vibration, the bar length 
is one half wavelength, so a dispersion curve, i.e. 
the relation between frequency and wavelength, 
can be obtained. 

3. Generalized continua 
3.1. Continuum models of structured 

materials 
If the structure of a material is sufficiently regular, 

3.2. The Cosserat continuum 
The Cosserat brothers [3] in 1909 advanced a 
theory for deformable bodies which admits 
degrees of freedom not present in classical 
elasticity. For example, points are considered 
to rotate with respect to each other in addition 
to undergoing translation. In recent years several 
researchers have explored generalized continuum 
theories of the Cosserat type [5-8] .  The consti- 
tutive equations of linear isotropic micropolar 
elasticity, considered to be identical to the Cosserat 
elasticity are [7] : 

(2) 

m~a = ~r + ~r + 3'r (3) 

in which the usual Einstein summation convention 
is used and the comma denotes differentiation 
with respect to spatial variables, e is the usual 
small strain tensor, defined in terms of the dis- 

1 placement, u: ekl = ~ (Uk,1 + Ul,k); rm is the macro- 
_ _ 1  rotation r m - ~ era]nUn, ] in which e is the permut- 

ation symbol, o is the asymmetric force stress 
tensor, m is the couple stress tensor and 4~ is the 
microrotation vector, which is kinematically 
independent of the macrorotation, r. The 
quantities X, g, K, a, /3, 3' are Cosserat elastic 
constants. Thus the isotropic Cosserat solid has 
six elastic constants, in contrast to the classically 
elastic solid which has two. The classical solid is 
obtained as a special case of the Cosserat solid 
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ff a,/3, % and K are zero. In this article we use the 
above notation which is due to Eringen [7]; a 
comparison with symbols used by other authors 
is given in [8]. 

A Cosserat elastic solid is predicted to behave 
differently in many respects from a classically 
elastic solid. In a Cosserat solid, dispersion of 
transverse waves [7], the existence of new k2mds 
of waves [71, size effects in the torsion [10] and 
bending [9] of rods, modification in the concen- 
tration of stress around holes [11, 12] and a 
modification of the mode structure of vibrating 
bodies [13] are predicted to occur. 

Despite the differences between the predictions 
of Cosserat and classical elasticity, few exper- 
iments have been done to determine whether a real 
material is describable as a Cosserat continuum. 
Metals, examined for possible couple stress 
elasticity, a special case of Cosserat theory, were 
found to behave classically [13, 14]. A model 
composite was tested to determine its micropolar 
elastic constants, but it was found to behave 
classically [10]. The same composite, studied by 
wave propagation methods, exhibited some non- 
classical, and possibly micropolar, effects [11]. 
A foam material was found to exhibit size effects 
consistent with couple stress theory [16]. Optical 
studies on a molecular crystal, interpreted in 
light of generalized continuum theory, revealed 
nonclassical effects [17]. In the above exper- 
iments, no Cosserat elastic effects were found 
[10, 14] or rather small and subtle effects were 
found [15, 17] and/or viscoelastic effects were 
not decoupled from the sought-after geometrical 
effects [16]. Recently the present author has 
obtained evidence of Cosserat elastic behaviour 
in human compact bone, a natural composite 
[18-23] .  As anticipated on the basis of continuum 
models of structured solids, the Cosserat charac- 
teristic lengths are comparable to the size of the 
dominant structural elements. 

3.3. Microstructure elasticity and its 
special cases 

The theory of elasticity with microstructure, 
[24] also known as micromorphic elasticity, [4] 
incorporates many of the degrees of freedom of 
a crystal lattice and is considered to be applicable 
to a variety of periodic and quasi-periodic struc- 
tures. In this theory, each point in the continuum 
is endowed with a triad of director vectors, which 
can rotate with respect to nearby triads as in 

Cosserat theory, and which can deform as well. 
Thus, sufficient degrees of freedom are incor- 
porated in the theory to account for acoustic 
wave dispersion and optical modes of lattices 
and other periodic structures. Eighteen indepen- 
dent elastic constants are required to characterize 
an isotropic material with microstructure, in con- 
trast to six for a Cosserat solid and two for a 
classically elastic material. A solid with micro- 
structure may be distinguished from a Cosserat 
solid by the dispersion of longitudinal waves 
predicted to occur in the former but not in the 
latter. 

Special types of elastic material with micro- 
structure include the Cosserat solid and the elastic 
solid with voids [25, 26]. In the former case, the 
director triad is rigid and has only the rotational 
degrees of freedom, while in the latter, the triad 
undergoes dilatation associated with pore volume 
changes, but there are no rotational degrees of 
freedom. 

4. Experimental results 
4,1. Size effects 
To display the size-effect data, it is convenient 
to plot rigidity divided by the square of the 
diameter against the square of the diameter. 
Figs. 3 and 4 show the size-effect in rods of foam 
in torsion and bending respectively, based on 
isochronal data taken 15 sec after application 
of a step torque. For a classically elastic material, 
the plot should be a straight line through the 
origin, since the rigidity depends on the fourth 
power of the diameter in both torsion and bend- 
ing. For a classically viscoelastic material, the 
plot will also be a straight line through the origin 
if isochronal data are used. The observed size 
effects are not consistent with classical elasticity 
or viscoelasticity. They are not a result of an 
artifactual densification of the spectrum since 
the specimen density is 36.74 -+ 0.64 kg m -3 
(mean -+ standard deviation) and the density 
does not exhibit any significant dependence on 
specimen diameter. 

Analysis of these results on the basis of Cosserat 
theory as a generalized continuum model is as 
follows. Within the framework of Cosserat theory, 
one can express the results both in terms of the 
micropolar elastic constants X, #, K, a, ~, ~f in the 
constitutive equations, Equations 2 and 3, and the 
micropolar technical constants E, G, v, '#, lt, lb, 
and N. The latter are defined as follows: 
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Figure 3 Experimental results, torsion. Rigidity/diameter squared against diameter squared in mm ~ . Points are exper- 
imental; curve is micropolar, G = 0.6 MN m -2 , q, = 1.5, N 2 = 0.09, I t = 3.8 mm. 

Young 's  modulus  (N m -2) 

Shear modulus  (N m -2) 

Poisson ratio (dimensionless) 

Characterist ic length,  tors ion (m) 

Characteristic length,  bending (m) 

Coupling number  (dimensionless) 

Polar ratio (dimensionless) 

The relationship be tween  various features o f  

size effect  plots for torsion [10] and bending [9] 

and the micropolar  constants  is shown in Figs. 5 

and 6 respectively.  In the case o f  tors ion,  (Fig. 3), 

the exper imenta l  data are f i t ted  well by  G = 0.6 

E = (2# + g)(3X + 2p + K)/(2X + 2/a + K) 

G = (2# + K)/2 

u = X/(2X + 2# + K) 

It = [(fl + 7)/(2/1 + K)] ~/= 

lb = [7/2(2# + K)] */= 
N,--- [/1;/20./4- K)] 1/2 
,Is = (~ + 7)/(o~ + ~ + 7)  

M N m  -2, ,Iz = 1 .5 , l  t = 3.8 mm,  a n d N  2 = 0.09. In 

tension,  the measured Young 's  modulus  is E =  

1.3 M N m  -2,  and v = 0.07. Since E = 2G(1 + v) 

as in the classical case, E based on G and v should 
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Figure 4 Experimental results, bending. Rigidity/diameter squared against diameter squared in mm ~ . Points are exper- 
imental, curve is micropolar, E = 1.1 MN m -2 , N 2 = 0.09, ~/"f = --0.62, I b = 5.0 mm. 
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Figure 5 Torsion of a micropolar rod, predicted behaviour. J is the specimen rigidity and d is its diameter. The asymp- 
totic slope for large d is proportional to G. Arbitrary units of force on the ordinate, arbitrary units of length squared on 
the abscissa. 

be 1.284 MN m -2 , a satisfactory agreement with E 
measured directly in tension. In the case of  bend- 
ing, (Fig. 4), the data cannot be f i t ted accurately 
by a theoretical micropolar curve. For  initial 
guesses based on the torsion results, the data 
points for the three largest specimens can be 
fi t ted reasonably well by E = 1.1 M N m  -2, N ~ = 

0.09, 1 b = 5 .0mm,  and 1~/')' = 0.62, but not  those 
with the smallest diameter. These deviations from 
the predictions of  Cosserat theory suggest that  the 
solid has additional degrees of  freedom. We there- 
fore examine other generalized continuum theories 
for their potential  applicability. 

The continuum theory of  materials with voids 
[25] is of  the same order of  complexi ty  as Cosserat 
theory,  but  it deals with changes in void volume 

as an additional kinematical variable, rather than 
the local rotations considered in Cosserat theory.  
This theory predicts size effects to occur in bend- 
ing [26], but  not under a state of  pure shear stress 
associated with torsion. We observe significant 
size effects in torsion (Fig. 2), therefore we shall 
not consider the void theory further for this foam 
material. It may, however, be applicable to 
materials with a different structure. 

4.2. Wave dispersion 
The theory of  elastic materials with microstructure 
is more general than either Cosserat theory or the 
theory of  materials with voids. It is sufficiently 
complex that very few analyses have been carried 
out using it [27]. The problems of  torsion and 
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Figure 6 Bending of a micro- 
polar rod, predicted behaviour. 
J is the specimen rigidity and 
d is the diameter. The asymp- 
totic slope for large d is propor- 
tional to E. Arbitrary units of 
force on the ordinate, arbitrary 
units of length squared on the 
abscissa. 
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bending have not yet been solved in this theory, 
so that it cannot be used in the analysis of the 
present quasistatic experimental results. Several 
wave propagation problems have, however, been 
examined in both Cosserat and microstructure 
theory. In an elastic material with microstructure, 
both transverse and longitudinal waves are 
dispersive [24] while in a Cosserat solid only the 
transverse waves are dispersive [7]. Experiments 
involving longitudinal standing waves have there- 
fore been performed. The results are shown in 
Fig. 7. The longitudinal waves are indeed dispersive 
and the form of the dispersion is in agreement 
with the predictions of microstructure elasticity. 
The physical origin of this dispersion is considered 
to be coupling of the acoustic wave motion to 
microvibrations of the unit cell of the structure. 
A dimensionless technical constant may be defined 
as follows: 

A 2 = ~2pd2/3E (4) 

in which co is the cut-off angular frequency, p is 
density, d is the cell size and E is Young's 
modulus. 

For w[27r=6kHz ,  d = l m m ,  p = 3 6 . 7 4 k g  
m -a, and E =  1.1MNm -2, we obtain A = 0 . 1 3 .  
Since neither a classical nor a Cosserat material is 
predicted to exhibit any cut-off frequency for 
longitudinal acoustic waves, these special cases of 
a material with microstructure correspond to an 
infinite value of A. 

5. Discussion 
The results presented in the previous section 

indicate that the foam does not obey the classical 
theory of elasticity or viscoelasticity. Cosserat 
theory describes the size-effect behaviour in torsion 
and over a range of specimen sizes in bending; and 
for sufficiently long longitudinal waves. The 
wave dispersion behaviour for the full range of 
wavelengths is consistent with the theory of 
elastic materials with microstructure, a gener- 
alization of Cosserat theory. Microstructure 
elasticity, however, has not yet been applied 
to the torsion and bending geometries used in 
the present size-effect studies. 

Very few experimental studies seeking to 
explore structure-related generalized continuum 
mechanics of materials have been performed. In 
most such studies the material, whether it be a 
polycrystalline metal [14] or a special composite 
[10], is found to behave classically. Recently the 
present author has found evidence for generalized 
continuum effects in a natural composite, human 
compact bone. In quasistatic torsion [21] and in 
torsion resonance [20] the observed size-effects 
are consistent with a restricted form of Cosserat 
viscoelasticity known as couple-stress theory, for 
specimens greater than 1 mm in diameter. The 
special case corresponds to N =  1, its maximum 
value. In the torsion of microsamples smaller than 
1 mm [23] and in quasistatic bending, [22], the 

observed size effects are consistent with Cosserat 
theory. The experiments permit the determination 
of N as well as the characteristic lengths. In quasi- 
static experiments, human compact bone appears 
to obey Cosserat theory. There remains the 
possibility that additional degrees of freedom, 

i i t i i i t i ~ 0  

" 1 -  

I I 

0 IIL (cm -I ) 

Figure 7 Dispersion of standing waves in a bar of foam: fundamental resonant frequency fagainst inverse of the wave 
length. In the free-free resonant configuration used here, the bar length is one half the wavelength. 
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perhaps related to microstructure elasticity, 
may be revealed in wave-propagation studies. 
We therefore examined published results on 
bone to get an estimate of  its possible micro- 

morphic (microstructure) elastic character. Ultra- 
sonic longitudinal waves o f  up to 10MHz have 
been successfully passed through bone, with no 
evidence of  internal resonance [28] or of  disper- 
sion of  the sort shown in Fig. 7. Since the density 
is 2 x 103 kg m -3 and the structure size (diameter 

of  osteons) is 0.25 mm, we obtain A 2 > 4.6. The 
Cosserat triad appears to be rather rigid. This 
crude estimate of  its rigidity is consistent with 
our previous successful application of  Cosserat 
elasticity (with rigid directors) to bone. 

A structural perspective could be taken in the 
analysis of  size-effects and wave mot ion in 

structured materials such as foamed plastics. For  
example, a finite-element analysis might be per- 
formed, considering the plastic material to be 
classically viscoelastic and the pore space to have 
zero stiffness. The largest specimens examined 
in this study are 40 mm in diameter and 200 mm 
long and therefore contain about 250000 cells. 
In a finite element analysis, each cell would be 
assigned at least four elements, or 106 elements 
in total .  This greatly exceeds the 104 elements 
currently associated with "large" problems in 
finite element analysis. The generalized continuum 

approach used in this article, by contrast,  is 
considerably simpler. 

6. Conclusions 
1. The porous polymeric foam of  cell size 

1 mm examined in this study deviates from 
classical elasticity. A deviation of  10% or less 
from classical theory in torsion is expected only 
for diameters greater than 60 mm. 

2. Cosserat elasticity is an accurate continuum 
model for both  torsion and bending of  specimens 
28 to 4 0 m m  in diameter,  and presumably for 
larger specimens. The torsion behaviour is well- 
described by  Cosserat theory for the full range of  
specimen sizes. Wave experiments are consistent 
with Cosserat theory only for wavelengths greater 
than 100 mm. 

3 . A  more general continuum approach is 
necessary to model  the full range of  observed 
behaviour. The theory of  elasticity with micro- 
structure, or the micromorphic theory,  should 
be an appropriate generalization of  Cosserat 
elasticity suitable for the solid examined here. 

Micromorphic degrees of  freedom may be 
responsible for the quasistatic results in the 
bending of  thin rods. 
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